Fully electrospun durable electrode for electrochemical double-layer capacitor

Tallinn University of Technology

Elvira Tarasova Viktoria Vassiljeva Illia Krasnou Natalja Savest Andres Krumme

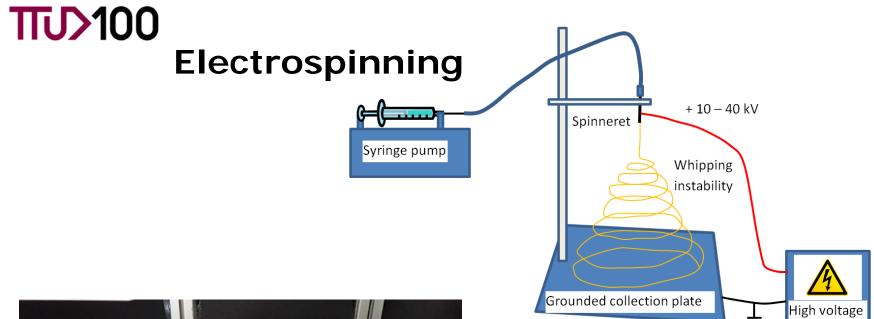
Skeleton Technologies OÜ

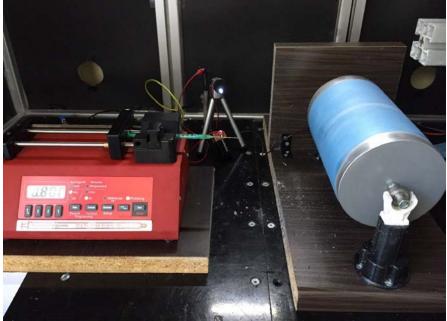
Siret Malmberg Mati Arulepp Jaan Leis

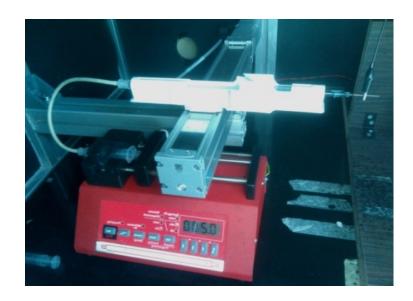
ESTEC

Léo Farhat Denis Lacombe

3RD SPACE PASSIVE COMPONENT DAYS 9-12 October 2018

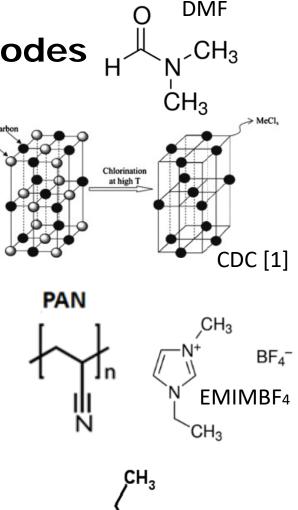



TTJ>100

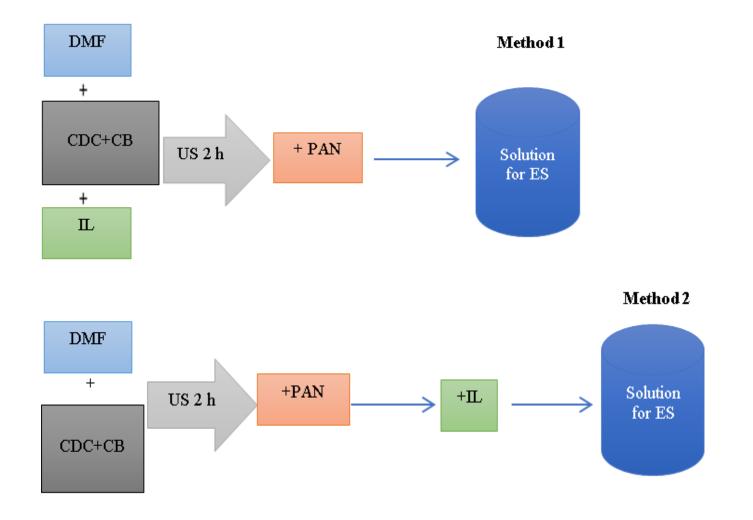

ESA/ESTEC

TUD Motivation and content

- Present work focuses on developing a method of producing carbon rich nanofibrous electrodes of EDLC supercapacitors by electrospinning method. Influence of properties of electrospinning solutions and polymer/carbon ratio to several physical and morphological properties of the electrodes was examined.
- Content:
 - Introduction to electrospinning technology
 - Components of the electrodes
 - Properties of the electrospinning solutions
 - Effect of carbon ratio to electrochemical properties
 - Effect of carbon ratio to mechanical properties

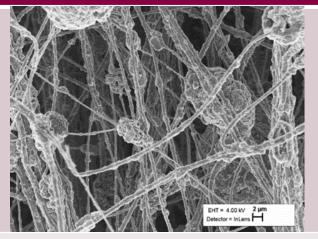


TUD 100 Components of the electrodes


- Solvent for electrospinning solutions: dimethylformamide (DMF)
- Matrix polymer: polyacrylonitrile (PAN)
- Filler for capacitance: TiC based carbide derived carbon (CDC)
- Filler for improved conductivity: carbon black (CB)
 - CDC/CB ratio was 80/20 wt-%
 - PAN/Carbon (CDC + CB) ratio was 50/50, 60/40, 65/35 and 70/30 wt-%
- Additive for improved dispersion of carbon and conductivity: 1-ethyl-3methylimidazoliumtetrfluoroborate (EMIMBF4) ionic liquid (IL)
 - Carbon/EMIMBF4 ratio was 7/10 wt-%
- Electrolyte: triethylmethylammonium tetrafluoroborate (TEMABF4) in acetonitrile (ACN)

[1] M. Sevilla, R. Mokaya, Activation of carbide-derived carbons: aroute to materials with enhanced gas and energy storage proper-ties, Journal of Materials Chemistry 21 (2011) 4727–4732

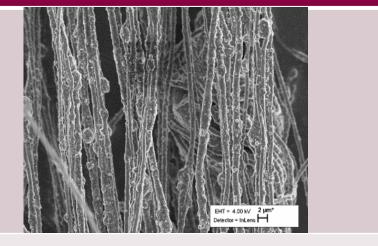
BF₄


TTJ>100 Electrospinning solutions

TUD100 Electrospinning solutions

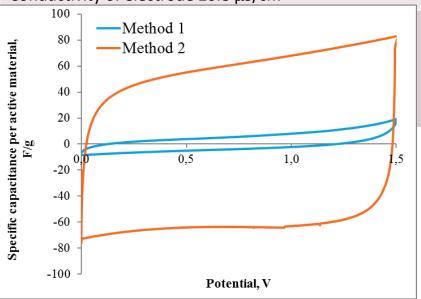
Method 1

Method 2

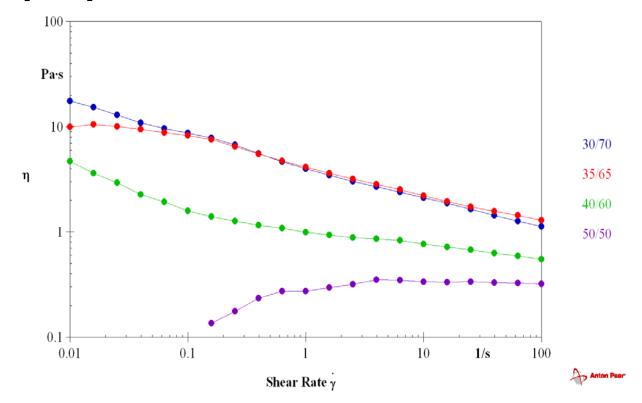


Pros: IL can protect pores from blocking

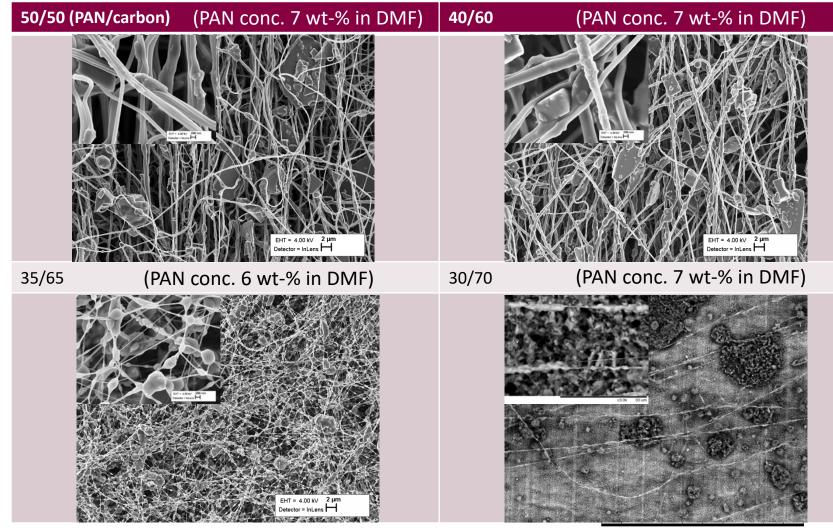
Con:


Degradation of IL due to US treatment [2] Agglomeration of carbon particles Conductivity of electrode 6.4 µS/cm Low capacitance

[2] G. Chatel and D. R. MacFarlane, Ionic liquids and ultrasound in combination: synergies and challenges, Chem. Soc. Rev., 2014, 43, 8132

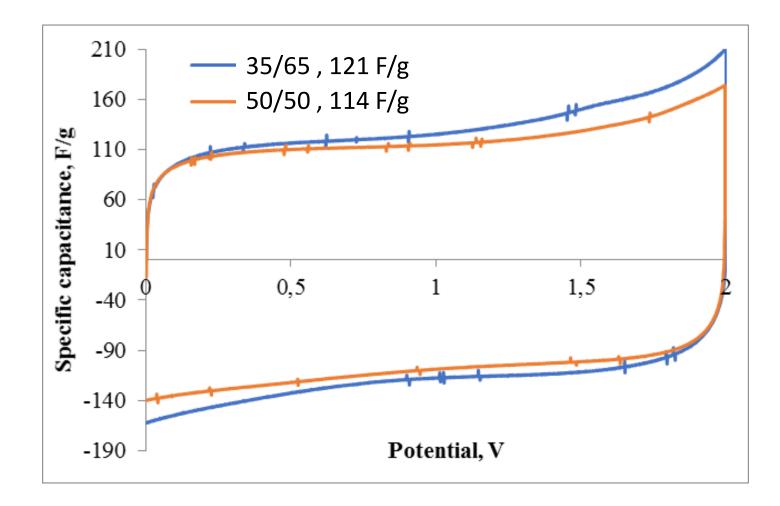

Pros:

Uniform morphology and even distribution of carbon Conductivity of electrode 20.8 μ S/cm


Πυ>100

Effect of PAN/carbon ratio: solution properties

PAN/carbon ratio	30/70	35/65	40/60	50/50
	Electric conductivity values (mS/cm)			
	12.41	12.16	8.45	9.2

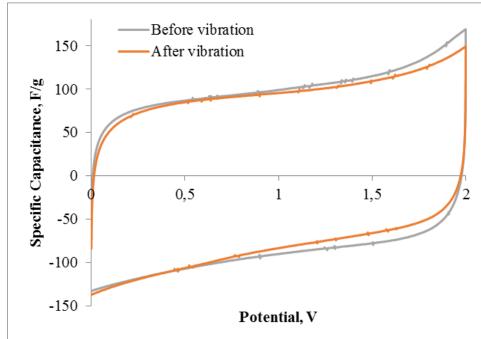

TUD100 Effect of PAN/carbon ratio: morphology

x500 200 um

πυ>100

Effect of PAN/carbon ratio: specific capacitance

TTJ>100 Effect of PAN/DMF ratio (PAN/carbon ratio 35/65)


Concentration	Electrical	Fiber diameter,	Specific
of PAN in DMF, wt-%	conductivity of the solution (mS/cm)	nm	capacitance (F/g)
3.9	10.95	201	28
5.0	12.08	195	60
6.0	12.32	249	121
7.0	12.60	a few fibers, 389	N/A

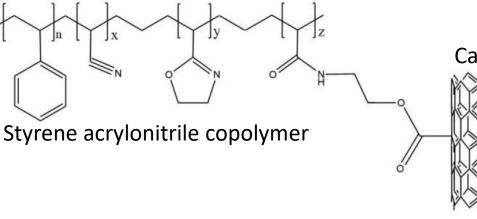
TTJ>100 Mechanical properties

Sample	Tensile stress S, MPa	Electrode thickness, μm
50/50 PAN/Carbon, 80/20 TiC/CB, 7/10 Carbon/EmimBF ₄	1.08	80
50/50 PAN/Carbon, 80/20 TiC/CB, 7/10 Carbon/EmimBF ₄ compacted in hydraulic press between flat plates at 25 bars and 75°C.	2.33	25 - 30
conventional roll-milled casted electrode made of PTFE+TiC+EmimBF ₄ in ratios: 94/6 TiC/PTFE	0.23	180

TUD100 Vibration test (PAN/carbon ratio 50/50, loss of capacitance ~5%)




Frequency	Acceleration	Velocity	Displacement
5 Hz	1 g	0,3 m/s	20,0 mm
10 Hz	4 g	0,6 m/s	20,0 mm
11 Hz	5 g	0,7 m/s	20,5 mm
30 Hz	5 g	0,3 m/s	2,7 mm
31 Hz	22,5 g	1,1 m/s	11,6 mm
71 Hz	22,5 g	0,5 m/s	2,2 mm
200 Hz	22,5 g	0,2 m/s	0,3 mm
201 Hz	10 g	0,1 m/s	0,1 mm
2000 Hz	10 g	0,008 m/s	0,001 mm
Frequency	Sweep Rate	Total	
range	Sweep Rate	duration	
(570) Hz	0,3 Oct/min	00:12:41	
(712000)	2,0 Oct/min	00:02:25	
Hz			


- Electrospun fibrous flexible EDLC electrodes have been successfully developed and corresponding technological procedures/conditions established.
- The developed flexible fibrous electrode PAN+ TiC/CB + EMIMBF₄ showed the specific capacitance up to 121 F/g.
- Optimal (regarding capacitance and mechanical properties) PAN/carbon ratio is 50/50 wt-%.
- Produced electrode showed good mechanical properties as tensile stress for fibrous electrodes were almost 10 times higher compared to the roll casted mats.
- Fibrous electrodes can be easily folded or twisted without inducing any visual damage.
- Specific capacitance of the electrode dropped after vigorous vibration only by 5%.

TTJ 100 Further steps: conductive/porous/binded matrix

Porous SAN fibre

Carbon-nanotube

TTJ>100 Acknowledgements:

- ESA (Contract No. 4000119258/16/NL/CBi, Fully electrospun durable electrode and electrochemical doublelayer capacitor for high frequency applications)
- Team of Tallinn University of Technology
- Skeleton Technologies
 OÜ

Mati, Siret, Tiia, Illia, Mihkel, Elvira, Viktoria, Andres

Prof. Andres Krumme

Tallinn University of Technology Department of Materials- and Environmental Technology

TU)100

Laboratory of Polymers and Textile Technology

Ehitajate tee 5 19086 Tallinn Estonia

andres.Krumme@ttu.ee

Tel. +372 620 2907